Crystal structure of the NADP+-dependent aldehyde dehydrogenase from Vibrio harveyi: structural implications for cofactor specificity and affinity.
نویسندگان
چکیده
Aldehyde dehydrogenase from the bioluminescent bacterium, Vibrio harveyi, catalyses the oxidation of long-chain aliphatic aldehydes to acids. The enzyme is unique compared with other forms of aldehyde dehydrogenase in that it exhibits a very high specificity and affinity for the cofactor NADP(+). Structural studies of this enzyme and comparisons with other forms of aldehyde dehydrogenase provide the basis for understanding the molecular features that dictate these unique properties and will enhance our understanding of the mechanism of catalysis for this class of enzyme. The X-ray structure of aldehyde dehydrogenase from V. harveyi has been solved to 2.5-A resolution as a partial complex with the cofactor NADP(+) and to 2. 1-A resolution as a fully bound 'holo' complex. The cofactor preference exhibited by different forms of the enzyme is predominantly determined by the electrostatic environment surrounding the 2'-hydroxy or the 2'-phosphate groups of the adenosine ribose moiety of NAD(+) or NADP(+), respectively. In the NADP(+)-dependent structures the presence of a threonine and a lysine contribute to the cofactor specificity. In the V. harveyi enzyme an arginine residue (Arg-210) contributes to the high cofactor affinity through a pi stacking interaction with the adenine ring system of the cofactor. Further differences between the V. harveyi enzyme and other aldehyde dehydrogenases are seen in the active site, in particular a histidine residue which is structurally conserved with phosphorylating glyceraldehyde-3-phosphate dehydrogenase. This may suggest an alternative mechanism for activation of the reactive cysteine residue for nucleophilic attack.
منابع مشابه
An induced aliphatic aldehyde dehydrogenase from the bioluminescent bacterium, Beneckea harveyi. Purification and properties.
A NAD+-dependent aldehyde dehydrogenase, the activity of which induces at the same time as luceriferase, has been purified from the bioluminescent bacterium Beneckea harveyi, and its chemical and physical properties have been investigated. The purification is accomplished in three steps resulting in an enzyme preparation that gives a single protein band on three different gel electrophoresis sy...
متن کاملCrystal Structures of a Hyperthermophilic Archaeal Homoserine Dehydrogenase Suggest a Novel Cofactor Binding Mode for Oxidoreductases
NAD(P)-dependent dehydrogenases differ according to their coenzyme preference: some prefer NAD, others NADP, and still others exhibit dual cofactor specificity. The structure of a newly identified archaeal homoserine dehydrogenase showed this enzyme to have a strong preference for NADP. However, NADP did not act as a cofactor with this enzyme, but as a strong inhibitor of NAD-dependent homoseri...
متن کاملCofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
UNLABELLED Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticum produce ethanol with a yield of 90% of the theoretical maximum, engineered strains of C. thermocellum produce ethanol at lowe...
متن کاملCrystal structure of NAD+-dependent Peptoniphilus asaccharolyticus glutamate dehydrogenase reveals determinants of cofactor specificity.
Glutamate dehydrogenases (EC 1.4.1.2-4) catalyse the oxidative deamination of l-glutamate to α-ketoglutarate using NAD(P) as a cofactor. The bacterial enzymes are hexamers and each polypeptide consists of an N-terminal substrate-binding (Domain I) followed by a C-terminal cofactor-binding segment (Domain II). The reaction takes place at the junction of the two domains, which move as rigid bodie...
متن کاملThree-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution.
Luciferases are a class of enzymes that generate light in the visible spectrum. Luciferase from luminous marine bacteria is an alpha-beta heterodimer monooxygenase that catalyzes the oxidation of FMNH2 and a long-chain aliphatic aldehyde. The X-ray crystal structure of bacterial luciferase from Vibrio harveyi has been determined to 2.4 A resolution. The structure was solved by a combination of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 349 Pt 3 شماره
صفحات -
تاریخ انتشار 2000